

WebGL & THREE.js

WebGL

Web Graphics Library

A standard programming interface by W3C to control 3D graphics with software (javascript)

Not yet fully supported by all browsers (Chrome, Opera, Android, Blackberry;

partial support for Firefox, IE, Safari)

👣 Three js

A free javascript library for 3D modelling (yes, inside your browser)

Working with WebGL

How to use three is

```
<html>
        <head>
               <title>My first Three.js app</title>
               <style>canvas { width: 100%; height: 100% }</style>
        </head>
        <body>
               <script src="js/three.min.js"></script>
               <script>
                       var scene = new THREE.Scene();
                       var camera = new THREE.PerspectiveCamera(75, window.innerWidth/) rotating 3D cube
                       var renderer = new THREE.WebGLRenderer();
Adds the
                       renderer.setSize(window.innerWidth, window.innerHeight);
HTLM5 Canvas:
                       document.body.appendChild(renderer.domElement)
                       var geometry = new THREE.CubeGeometry(1,1,1);
                       var material = new THREE.MeshBasicMaterial({color: 0x00ff00}):
                       var cube = new THREE.Mesh(geometry, material);
                       scene.add(cube);
                       camera.position.z = 5;
                       var render = function () {
                               requestAnimationFrame(render);
                               cube.rotation.x += 0.1;
                               cube.rotation.y += 0.1;
                               renderer.render(scene, camera);
                       };
                       render();
               </script>
        </body>
</html>
```

Example from the Web:

Create a scene object and add a

Source:

http://threejs.org/docs/#Manual/Introduction/Creating a scene

A Dildo Generator (I)

Right canvas:

A Bezier curve editor to specify the outline (made with a 2D context and plain javascript)

Left canvas:

The preview canvas (made with 3D context and three.js)

A Dildo Generator (II)

- Final View in the Browser
- Important: STL export

STE

Surface Tesselation Language

Standard Triangulation Language

~

Standard Tesselation Language

First Printing Results

The first printing test was a simple revolution solid with 6*10 mesh points (very pointy)

Hollow Approach

- The next step was to print hollow shapes
- Idea: make molds that fit perfectly together

Try-and-Error

- Printer Type
- RapMan v3.1
- Result is bumpy and edgy
- Printing process requires constant monitoring
- Problem: material flow interrupts randomly
- Material ABS (Acrylonitrile butadiene styrene) is very hard and kind of brittle

"Reizend"

Try-and-Error (II)

- Interruptions in the material flow were a mayor problem with the RapMan model
- The surface structure was way too fuzzy
- Not suitable to cast a solid with silicone

Align Molds on Plane

- Solution: Don't print the molds in upright position
- Instead: align both parts vertically on plane
- This avoids the molten material to drop down (hopefully)

Printing the Mold

- Printing a custom mold with a FakerBot
- Material: PLA

Optimized the Mesh (I)

- The first usable mold
- Printed with PLA (polylactic acid)
- Massive socket added
- Printing time: 5h

Casting in the Silicone (Attempt I)

- Pouring in the Silicone is easy
- Two-Component Silicone (1:1) sets within one hour
- Polymerizes at room temperature
- Silicone is harmless to human body (don't eat, anyway)
- Heat resistant

Smoothen the Mold (I)

- Structure of printed filament was very detailed on the silicone's surface
- Idea: smoothen the inside of the mold's surface with molten paraffin (candle wax)
- Is harmless to human body
- Available at local store
- Melting point near 45°C (boiler plate and metal pot work)

The first smoothened result seemed OK but still wasn't perfect (bigger lumps from the wax)

Smoothen the Mold (II)

- Problem: ugly bumps emerge when applying the molten wax
- Solution: smoothen the bumps with a heating fan
- Remove expandable wax

Actual Results

 Further smoothening with a hot air fan (to remove the bumps from the wax)

- The current solution works so far
- There are still minor surface issues
- Problem: some paraffines prevent the silicone from polymerizing complety (stays someway sticky)

And now for something completely different

- Questions?
- Please send bug reports to ikaros@polygon-berlin.de

- tttps://github.com/JkarosKappler/extrusiongen
- ttp://www.dildo-generator.com/
- http://www.polygon-berlin.de/dildogenerator
- https://re-publica.de/session/cast-your-own-silicone-dildo